
Proc. Natl. Acad. Sci. USA
Vol. 95, pp. 4453–4457, April 1998
Evolution

Instability of signaling resolution models of
parent–offspring conflict
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ABSTRACT Recent signaling resolution models of par-
ent–offspring conflict have provided an important framework
for theoretical and empirical studies of communication and
parental care. According to these models, signaling of need is
stabilized by its cost. However, our computer simulations of
the evolutionary dynamics of chick begging and parental
investment show that in Godfray’s model the signaling equi-
librium is evolutionarily unstable: populations that start at
the signaling equilibrium quickly depart from it. Further-
more, the signaling and nonsignaling equilibria are linked by
a continuum of equilibria where chicks above a certain
condition do not signal and we show that, contrary to intu-
ition, fitness increases monotonically as the proportion of
young that signal decreases. This result forces us to reconsider
much of the current literature on signaling of need and
highlights the need to investigate the evolutionary stability of
signaling equilibria based on the handicap principle.

The study of food solicitation has had a controversial history
(1–5). Today, it is commonly believed that begging is a reliable
signal, stabilized by its cost, whereby young inform their
parents of their need of food. Consider the case of an adult bird
rearing young in single-chick broods (1). The optimal parental
investment, from the perspective of the chicks and the parents,
depends on the condition of the chick. Godfray (1) assumed
that chicks beg with intensity x(c) when they are in condition
c and parents bring an amount y(x) of food when chicks beg
with intensity x (whatever the condition of the chick, assumed
to be unknown to the parent). With the assumption that x(c)
and y(x) are continuously differentiable, he could derive the
functions x*(c) and y*(x) that constitute a Nash equilibrium (6)
for the hypothesized fitness functions. At the Nash equilib-
rium, chicks in lower condition beg at higher intensity and
parents provide more food to chicks begging at higher intensity
(1), in agreement with the results from most experiments and
observations (7). Because at the Nash equilibrium nobody can
benefit from a unilateral behavioral modification, it was
implicitly assumed that evolution would end up finding this
Nash equilibrium: begging, signaling of need, was thus ex-
pected to evolve and be stable.

In addition to the signaling equilibrium derived by Godfray
(1), the model has a more efficient nonsignaling Nash equi-
librium (8, 9), where chicks do not beg and parents provide all
chicks with the same amount of food. Our aim was to inves-
tigate the evolutionary stability of the signaling and the
nonsignaling equilibria. To do this we simulated in the com-
puter the evolutionary dynamics of parent–offspring commu-
nication. In the description of these simulations, a function x(c)
that assigns a begging intensity x for each condition c will be
referred to as an offspring strategy, and a function y(x) that

assigns an amount of parental care y for each begging intensity
x will be referred to as a parental strategy.

In a first simulation we followed the signaling model (1) as
closely as possible. We simulated two populations of N off-
spring and N parental strategies, competing in a two-round
context. In the first round, offspring strategies competed
against each other and the payoff of an offspring strategy
depended on the strategies present in the parental population
at the moment. Each offspring strategy produced 100 (possibly
inaccurate) copies of itself. Each copy (the ‘‘offspring’’) se-
lected at random one parental strategy (the ‘‘parent’’). The
offspring was allocated a random condition c, and the begging
level x and parental investment y were determined from c
according to the strategies of the offspring and parent. The
offspring received a ‘‘score’’ corresponding to its inclusive
fitness (1). The second round constituted an analogous com-
petition between the parental strategies, with the pertinent
modifications in the calculations of inclusive fitness (1). At the
end of each round, the N offspring and N parents with highest
scores were selected to constitute the next generation, and the
process was iterated. The results of some simulations are
shown in Fig. 1, where it can be seen that the signaling
equilibrium was not stable. For the parameter values used and
small populations (N 5 100), the population approached the
nonsignaling equilibrium, but for bigger populations (N 5
1,000) strong signaling remained at the end of the simulations.

Although the approach used to generate Fig. 1 closely
followed the assumptions of Godfray’s signaling model, it
failed to incorporate a number of facts that may be important
in real populations. In particular, instead of having individuals
who used their offspring strategy when young and their
parental strategy when breeding, we had a contest between two
independent populations of offspring and parental strategies.
To overcome this problem we simulated a sexual haploid
population living in a set of ‘‘territories.’’ Individuals had a
single copy of two genes, coding for an offspring and a parental
strategy. In each generation, every adult (the caring parent)
reared a young that resulted from mating with a randomly
selected individual. Offspring inherited each gene from one of
its parents, randomly selected (both genes could be inherited
from the same parent, or one gene from each: inheritance of
the two genes was independent). The coefficient or relatedness
between successive offspring of a caring parent was hence r 5
0.5. Each young was randomly assigned a condition c and its
begging-strategy gene was used to determine the begging level
x. The caring parent used its parental-strategy gene to select an
amount of food y that was provided to the young. The
quantities c, x, and y were then used to calculate individual
fitness (1). At this point young dispersed to randomly selected
territories and a new breeding population was selected by
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choosing, at each territory, a breeder from the previous
resident and all the young arriving at that territory. The
probability that a given individual was chosen was equal to its
fitness relative to the mean fitness at the territory (this
constitutes another important difference with respect to the
previous simulations, where the globally optimal strategies
were selected to form the following generation). By allowing
random mutations in the offspring and parental strategies, it
was observed that nonsignaling is a stable equilibrium and
signaling is not (Fig. 2). Nevertheless, after one million gen-
erations begging had not disappeared, and chicks in low
condition begged for food as vigorously as ever (although there
was a high degree of variability in the strategies of different
individuals, not shown in the figure).

Despite their huge differences (asexual vs. sexual reproduc-
tion, global and deterministic vs. local and random selection),
both simulations produced very similar results. It remains to be
investigated whether nonsignaling is a global attractor in big
populations and, if it is, the relationship between rate of
convergence and population size. If nonsignaling were not a
global attractor, or if convergence were very slow, communi-
cation could be preserved, despite the lack of stability, essen-
tially forever.

The stability of the signaling and nonsignaling equilibria can
be analyzed analytically if discontinuous functions are included
in the strategy set. In this case, the model admits partially
signaling equilibria where only chicks in low condition signal:
chicks with condition c . c0 do not signal and received an
amount of food y0. Chicks with condition c , c0 signal at

intensity x(c) . x0 (parents do not respond to signals of
intensity below x0) and receive an amount of food y(x) . y0.
Chicks with condition c 5 c0 are indifferent between signaling
at intensity x0 or not signaling. It is shown in the Appendix that
although these partially signaling equilibria cannot exist if the
strategy set includes only continuous functions, when discon-
tinuous strategies are considered, the set of partially signaling
equilibria constitutes a continuum linking the signaling and
nonsignaling equilibria in the (c0, x0) plane. When the distri-
bution of chick conditions is uniform, and the same fitness
functions and parameter values used by Godfray (1) are used,
the expected fitness of parents and chicks increases monoton-
ically as c0 decreases (i.e., as the proportion of chicks that signal
decreases) and is maximum for the nonsignaling equilibrium
(Fig. 3). It follows that, in a strategy space that includes
discontinuous functions, nonsignaling is convergence stable,
whereas signaling is not. Because partial equilibria exist for any
parameter values and most distributions of chick conditions,
and because fitness is higher at the nonsignaling than at the
signaling equilibria for a wide range of parameter values and
distributions of chick conditions (9), this result is likely to be
robust with respect to changes in parameter values.

In a strategy space that includes discontinuous strategies, the
partially signaling equilibria (together with Fig. 3) would be
sufficient explanation for the instability of the signaling equi-
librium. In our simulations, however, only continuous strate-
gies were considered. As we proceed to show, the factor
responsible for the instability of the signaling equilibrium in
the absence of discontinuous strategies seems to be variability

FIG. 1. Two-round contest. Mean begging level (Upper) and parental investment (Lower) plotted as a function of chick’s condition when
population size was N 5 100 (Left–shows average over five runs) and N 5 1,000 (Right–single run). The solid line represents the initial condition
and the others values after 1,000, 5,000 (dashed lines) and 10,000 (dotted lines) generations. Young condition c was selected from a rectangular
distribution (0.5–2.5) (2). Young and parental inclusive fitness (2) were calculated according to Fch 5 (1 2 e2czy) 2 Vzx 2 rzgzy and Fp 5 (1 2 e2czy)
2 Vzx 2 gzy, respectively (V 5 0.1, g 5 0.08, r 5 0.5). The contest started at the signaling equilibrium. Signaling strategies were coded as interpolation
tables which could mutate with probability 0.05. An offspring strategy coded for the begging intensities x(ci) associated with evenly distributed
conditions ci (i 5 0, . . . nc; c0 5 0.5, cnc 5 2.5; nc 5 20 for N 5 100 and nc 5 10 for N 5 1,000), and a parental strategy coded for the parental
investment levels y(xi) associated with evenly distributed begging intensities xi (i 5 0, . . . nx; x0 5 0.0, xnx 5 2.5; nx 5 50 for N 5 100 and nx 5
25 for N 5 1,000). The begging strategy for a chick with condition c and the parental response to a begging intensity x were determined from the
x(ci) and y(xi), respectively, by polynomial interpolation (third order). In case of mutation, a ‘‘bump’’ was added to the table by randomly choosing
an integer J (uniform distribution between 0 and nc or nx) and a real z (standard normal distribution) and adding to every entry i in the table the
amount 0.2z(0.05 1 w)zzzexp[2(8z(i 2 J)ynw)2] where w 5 x(cJ) and nw 5 nc for the offspring strategy and w 5 y(xJ) and nw 5 nx for the parental
strategy. To avoid ending with oscillating strategies, the interpolation tables were smoothed to ensure that they had at most one maximum and
one minimum (the highest and lowest values in the table were looked for, and terms were ordered in the three sections: from first term to first
extremum, between the two extrema, and between second extremum and end of table).
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in offspring’s condition and its effect on fitness. To a large
extent, condition will determine which individuals constitute
the next generation: a chick in very good condition with a
suboptimal signaling strategy will be more likely to survive
than a chick in very bad condition with an optimal strategy.
That this factor played a key role in the instability of the
signaling equilibrium was demonstrated with a modification of
the simulations: for each parent–offspring pair, instead of

choosing a random value of c to calculate fitness, parent and
offspring fitness were calculated as the average obtained over
25 randomly chosen conditions of the chick. This procedure
effectively eliminates variability in chick condition and thus
selects the strategies leading to a higher average fitness. With
this modification, the population remained at the signaling
equilibrium (Fig. 4).

Two main conclusions follow from our results. First that our
understanding of signaling of need is worse than we thought,
and second that the results obtained above seem to contradict
empirical observations. There is considerable empirical evi-
dence that begging contains information about need and that
parents adjust feeding effort to the level of begging (10–13).
This is true both for species with one young and species with
several young. Further, there seem to be no examples of species
in which begging does not occur.

There are a number of possible causes for this paradox. The
most likely possibility is that one or several stabilizing factors
present in nature are not included in present analyses of
begging. Fig. 4 suggests that an iterated version of the model
would be stable. As parents and their offspring interact a large
number of times during the rearing period, this might seem a
satisfactory solution. There are, however, a number of prob-
lems with it. In the long run, (i) the payoffs are not additive and
(ii) the fitness functions should be age dependent. These two
problems could potentially be solved if the number of itera-
tions is not too large (say, if we consider the parent–offspring
interaction during a few hours or a day). If only a short period
is considered, however, because the condition of a chick in
consecutive visits will be strongly correlated, (iii) the begging

FIG. 3. Inclusive fitness of parents (solid line) and offspring (dotted
line) at the partially signaling equilibria, plotted as a function of the
proportion of offspring that signal. Fitness functions and parameter
values as in ref. 2.

FIG. 2. Evolutionary dynamics of begging. Mean begging level (Upper) and parental investment (Lower) are plotted as a function of chick’s
condition when the simulation was started at the signaling (Left) and nonsignaling (Right) equilibrium. Note that, because of the specific life history
chosen for the simulation, the signaling equilibrium is given by
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The solid line represents the initial condition and the others, values after 250,000, 500,000, 750,000 (dashed lines), and 1,000,000 (dotted lines)
generations. The population had 1,225 territories. Young condition c was selected from a rectangular distribution (0.5–2.5) (2). Young and parental
fitness (2) were calculated according to Fch 5 (1 2 e2czy) 2 Vzx and Fp 5 1 2 gzy, respectively (V 5 0.1, g 5 0.08). Young dispersed at random.
Signaling strategies could be any linear combination of the signaling equilibrium solution and polynomials of degree up to five. The genes coded
for the coefficients of the terms, which could mutate with probability 0.001. In case of mutation, a single coefficient k was selected a random and
a value (k 1 0.05)z0.2zz was added to it, where z was a random variate chosen from a standard normal distribution. Mating and dispersal were random,
irrespective of ‘‘distance’’ between territories. Qualitatively similar results were obtained with haploid and diploid individuals, when strategies were
coded as neural networks or interpolation tables, and when mating and dispersal were restricted to neighboring territories.
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strategy will be tested in only a limited range of conditions,
instead of being tested in the entire possible range: the
situation is then intermediate between that plotted in Figs. 2
and 4 and we have no guarantee that signaling will be stable.
As a result, although signaling may well be stable in a dynamic
interaction, the full solution of a dynamic model remains to be
elucidated. In particular, because of the marked differences
between the solutions of static and dynamic games (6), it is
possible that the dynamic interaction admits a signaling solu-
tion that is both stable and efficient.

An alternative possibility is that what we observe in nature
is not evolutionary stability. Begging and feeding strategies
may fluctuate within certain ranges over evolutionary time. If
so, a positive relationship between need and begging level, and
between begging level and parental effort, may nevertheless
occur for most (or all) the states of this dynamics, as was the
case in our simulation. Similar results have been obtained in
recent simulations of signal evolution using artificial neural
networks as models of the receiver. In these simulations
communication occurs but signaler and receiver constantly
change their strategies as biases in the receiver are exploited
and the receiver counteradapts (14, 15). The cost of signaling
varies over time but is roughly dependent on the degree of
conflict between the players involved.

Future studies must address two questions: how signals
evolve (10, 16) and how (and whether), once evolved, signaling
systems are stabilized or maintained. The existence of a
nonsignaling equilibrium where both signalers and receivers

have higher expected fitness than at the signaling equilibrium
seems to be the norm rather than the exception (8, 17). Most
signaling games are likely to admit partially signaling solutions.
Whether in sexual selection or in any other context, the
‘‘quality’’ of the signaler will normally have a strong impact on
its fitness, whatever its signaling strategy. Furthermore, in
many contexts the quality of an individual may be relatively
fixed throughout its life, leading to a situation closer to that
represented in Figs. 1 and 2 than in Fig. 4. It is therefore
possible that our results generalize to other signaling models
based on the handicap principle (18, 19). We believe that the
evolutionary stability of these models must be critically reex-
amined.

Appendix: Partially Signaling Equilibria

We start by introducing some definitions. The expected inclu-
sive fitness of a begging strategy x(c) paired with a parental
response y(x), Fch[x(c); y(x)], is given by (2, 12)

Fch@x~c!; y~x!# 5 E
cmin

cmax

@f~c, x~c!, y~x~c!!!

1 rzg~y~x~c!!!#zr~c!zdc, [A1]

where f(c, x, y) is the inclusive fitness of a chick in condition c,
begging with intensity x and receiving an amount y of parental
provisioning; g(y) is the expected future reproductive success
of a parent providing y to its present offspring; r is the
coefficient of relatedness between the chick and future off-
spring; r(c) is the probability distribution function for the
condition of the young, and cmax and cmin are the maximum and
minimum values, respectively, that the condition of the chick
may attain. Likewise, the expected inclusive fitness of a
parental strategy y(x) paired with a begging strategy x(c),
Fp[y(x); x(c)], is given by

Fp@y~x!; x~c!# 5 E
cmin

cmax

@f~c, x~c!, y~x~c!!!

1 g~y~x~c!!!#zr~c!zdc. [A2]

For Godfray’s model (2),

f~c, x, y! 5 1 2 e2czy 2 Vzx [A3]

and

g~y! 5 G 2 gzy, [A4]

where V is the proportional cost of begging, g is the cost of
providing food, and G is a constant.

A partially signaling equilibrium can be defined by c0 (the
condition above which chicks do not signal) and x0 (the
minimum nonzero signal intensity used by chicks). The fol-
lowing conditions must be satisfied at a partially signaling
equilibrium. For the parents:

E
c0

cmax d
dy

@f~c, 0, y! 1 g~y!#U
y5y0

zr~c!zdc 5 0 [A5]

and

d
dy

@f~c, x, y! 1 g~y!# 5 0. [A6]

Eq. A5 defines the optimal investment level for nonsignaling
chicks and Eq. A6, for signaling chicks. In the signaling region,
the optimal signaling level is determined by

FIG. 4. Importance of stochasticity. Simulations as in Fig. 1 (N 5
100), except that the payoff of a strategy was calculated as the average
inclusive fitness over 25 random values of c. Similar results were
obtained when the simulations were run as in Fig. 2.
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d
dx

f~c, x, y! 1
dy
dx

z
d
dy

@f~c, x, y! 1 rzg~y!# 5 0. [A7]

Finally, chicks with condition c0 must be indifferent between
signaling (at intensity x0) or not:

f~c0, 0, y0! 1 rzg~y0! 5 f~c, xc, y~x0!! 1 rzg~y~x0!!. [A8]

Absence of Continuous Solutions. The conditions that must
be satisfied are Eqs. A5–A8 and the continuity conditions x0 5
0 and y0 5 limx30 y(x). Let us assume that c0 , cmax. Then we
must have

d
dy

@f~c0, 0, y0! 1 g~y0!# 5 0, [A9]

which derives from the continuity condition combined with A6.
But A5 and A9 cannot be satisfied if c0 , cmax: because fyc ,
0, if A9 is satisfied the integrand in A5 is always negative, and
hence the integral is also negative.

This result shows that we cannot have a partially signaling
equilibrium that is continuous in y: if there is a partially
signaling equilibrium, one must have y0 , y(x0).

Consider now the case where y(x) is discontinuous but x(q)
is continuous. In other words, y0 , y(x0) (hence discontinuous),
and x0 5 x(c0) 5 0 (continuous, because chicks with c . c0 do
not beg). The inclusive fitness of a chick with condition c and
begging at intensity x has a maximum at some value y*(c, x) .
ysig(x) (because of the parent–offspring conflict). For y , y*(c,
x), Fch(c, x, y) is an increasing function of y. Suppose now that
c0 , cmax. In this case, y0 , y(x 5 0) and A8 cannot be satisfied.
This completes the proof that if a partially signaling equilib-
rium is to exist, both x(c) and y(x) must be discontinuous.

Discontinuous Solutions. Consider now the case y0 , y(x0)
and x0 5 x(c0) . 0. Parents give a certain amount of food y0
(defined by A5) if x , x0 and some increasing amount of food
for higher begging levels.

With the fitness functions defined in A3 and A4 it is possible,
for every value of c0, to obtain a value of x0 such that A5–A8

are all satisfied. The values of x0 and y0 increase continuously
as c0 goes from cmax to cmin.
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